Wie das Team in der Zeitschrift Nature Communications berichtet, kann LLTO die Energiedichte, Leistungsdichte, Laderate, Sicherheit und Lebensdauer von Batterien verbessern, ohne dass eine Verkleinerung der Partikel von der Mikrometer- auf die Nanometerskala erforderlich ist.
Anoden in Lithium-Ionen-Batterien bestehen aus einem Stromableiter und einem darauf aufgebrachten Aktivmaterial, in dem Energie in Form chemischer Bindungen gespeichert wird. Als Aktivmaterial dient ganz überwiegend Graphit. Negative Elektroden aus Graphit haben allerdings eine niedrige Laderate. Unter den alternativen Aktivmaterialien wurde Lithium-Titanat-Oxid (LTO) bereits kommerzialisiert. Negative Elektroden mit LTO bieten eine höhere Laderate und gelten als sicherer als solche mit Graphit. Allerdings haben LIB mit LTO-Anoden tendenziell eine niedrigere Energiedichte.
Höhere Zellspannung und Kapazität erreichbar
Das Team um Professor Helmut Ehrenberg, Leiter des Instituts für Angewandte Materialien – Energiespeichersysteme (IAM-ESS) des KIT, hat nun ein weiteres vielversprechendes Anodenmaterial erforscht: Lithium-Lanthan-Titanat mit Perowskit-Kristallstruktur (LLTO). Wie die gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern der Jilin-Universität in Changchun, China, und weiterer Forschungseinrichtungen in China und Singapur durchgeführte Studie ergeben hat, weisen LLTO-Anoden im Vergleich zu kommerzialisierten LTO-Anoden ein niedrigeres Elektrodenpotenzial auf, wodurch sich eine höhere Zellspannung und eine höhere Kapazität erreichen lassen.
„Zellspannung und Speicherkapazität bestimmen letztendlich die Energiedichte einer Batterie“, erklärt Ehrenberg. „Künftig könnten LLTO-Anoden besonders sichere und langlebige Hochleistungszellen ermöglichen.“ Die Studie trägt zur Arbeit der Forschungsplattform für elektrochemische Speicher CELEST (Center for Electrochemical Energy Storage Ulm & Karlsruhe) bei, einer der größten Batterieforschungsplattformen weltweit, in die auch das Exzellenzcluster POLiS eingebettet ist.